Home
Class 12
MATHS
Evaluate |cosalphacosbetacosalphasinbeta...

Evaluate `|cosalphacosbetacosalphasinbeta-sinalpha-sinbetacosbeta0sinalphacosbetasinalphasinbetacosalpha|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |[cosalphacosbeta,cosalphasinbeta,-sinalpha],[-sinbeta,cosbeta,0],[sinalphcosbeta,sinalphasinbeta,cosalpha]|

Evaluate |{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}|

Evaluate |[cosalpha cosbeta,cosalpha sinbeta,-sinalpha],[-sinbeta,cosbeta,0],[sinalpha cosbeta,sinalpha sinbeta,cosalpha]|

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Evaluate |{:(cos alpha cos beta,,cos alphasinbeta,,-sinalpha),(-sinbeta,,cos beta,,0),(sinalpha cos beta,,sinalphasinbeta,,cos alpha):}|

Evaluate Delta=|0sinalpha-cosalpha-sinalpha0sinbetacosalpha-sinbeta0|

Evaluate: =|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these

If A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)] then (A) |A| is independent of alpha and beta (B) A^-1 depends only on beta (C) A^-1 does not exist (D) none of these