Home
Class 12
MATHS
If t=(x^(4)+cotx), find (d^(2)y)/(dx^(2)...

If `t=(x^(4)+cotx),` find `(d^(2)y)/(dx^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=3at^(2);x=5bt^(4) ,find (d^(2)y)/(dx^(2)) at t=1

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If y=log(1+2t^(2)+t^(4)),x=tan^(-1)t," find "(d^(2)y)/(dx^(2)) .

If x =a ( t - sint ) , y =a ( 1 + cos t ) find (d ^(2) y )/(dx ^(2)).