Home
Class 12
MATHS
lim(x->pi)(x^pi-pi^x)/(x^x-pi^pi) equal ...

`lim_(x->pi)(x^pi-pi^x)/(x^x-pi^pi)` equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->pi)(sin(pi-x))/(pi(pi-x))

lim_(x->pi/4)(tan2(x-pi/4))/(x-pi/4)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

(lim)_(x->1)(sinpix)/(x-1) is equal to a. -pi b . pi c. -1/pi d. 1/pi

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to

Lt_(x to pi)(sinx)/(x-pi) is equal to

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))