Home
Class 12
MATHS
[" (d) None of the above "],[" 23.Soluti...

[" (d) None of the above "],[" 23.Solution of "|x-1|>=|x-3|" is "],[[" (a) "x<=2," (d) "x>=2],[" (c) "[1,3]," (d) None of these "],[" (c) For all "x in R," if "lambda x^(2)-9 lambda x+5 lambda+1>0," then "lambda" lies in th "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

If the two roots of the equation (lambda-1)(x^(2)+x+1)^(2)-(lambda+1)(x^(4)+x^(2)+1)=0 are real and distin then lambda lies in the interval

If the lines 3x + 4y+ 1 = 0, 5x +lambda y + 3 = 0 and 2x + y-1 = 0 are concurrent, then lambda=

int_ (lambda =) (dx) / (sqrt (1-tan ^ (2) x)) = (1) / (lambda) sin ^ (- 1) (lambda sin x) + C, then

The equations lambda x -y = 2 ,2 x -3 y = - lambda and 3x - 2y = - 1 are consistent for a) lambda=-4 b) lambda=1,4 c) lambda=1,-4 d) lambda=-1,4

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0