Home
Class 11
MATHS
Let P(x) be the polynomial x^3 + ax^2 + ...

Let P(x) be the polynomial `x^3 + ax^2 + bx + c`, where `a,b,c in R`. If `P(-3) = P(2) = 0` and `P'(-3)<0`, which of the following is a possible value of `c`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(x) be the polynomial x^3+a x^2+b x+c , where a ,\ b ,\ c in R . If P(-3)=P(+2)=0 and P '(-3)<0 , which of the following is a possible value of ' c ' ? -27 (b) -18 (c) -6 (d) -3

Let P(x) = x^4 + ax^3 + bx^2 + cx + d, where a, b, c, d in RR .Suppose P(0) = 6, P(1)=7, P(2) = 8 and P(3)=9, then find the value of P(4).

In the polynomial p(x)= a x^ 3 + b x^ 2 + c x + d if p(2)=p(-2), prove that 4a+c=0.

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d, where a ,b,c,d in R. Suppose P(0)=6,P(1)=7,P(2)=8 and P(3)=9 , then find the value of P(4)

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d, where a,b,c,d in RR . Suppose P(0)=6,P(1)=7,P(2)=8 and P(3)=9, then find the value of P(4)

If P(x) = ax^(2) + bx + c and Q(x) = - ax^(2) + dx + c, where ac ne 0 , then P(x) . Q(x) = 0 has at least :

Consider the polynomial P(x)=ax^3-x^2-bx-1 .Find P(1) .

The polynomial p(x)=ax^(2)+bx+c can have at most zeros, where ane0 :

If x=1and x=2 are the zeros of polynomial P(x)=x^(2)+ax^(2)+bx+c where a+b=1 then Value of P(3) is