Home
Class 11
MATHS
xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= xsqrt(x) then (dy)/(dx) =?

If xsqrt(1+y)+ysqrt(1+x)=0, find ("dy")/("dx") . To prove (dy)/(dx)= -1/(1+x)^2

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((1+x)^2)

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)