Home
Class 12
MATHS
If y = tan^(-1)[(ax-b)/(bx+a)] then prov...

If `y = tan^(-1)[(ax-b)/(bx+a)]` then prove that `(dy)/(dx) =1/(1+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= tan ^-1((ax-b)/(bx+a)) " then prove that " du/dx=1/(1+x^2).

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y = tan^(-1)((sqrt(1 + x^2)-1)/(x)) , prove that (dx)/(dy) = 1/(2(1 + x^2))

if y=tan^(-1)((sin x)/(1+cos x)) prove that (dy)/(dx)=(1)/(2)

y= tan^(-1) ((ax-b)/(bx + a)) " then " (dy)/(dx)|_(x= -1) = ………

If y=tan^(-1)sqrt((1-cos x)/(1+cos x)), prove that (dy)/(dx)=(1)/(2)

If y = ( tan x)/( 1+ tan^2 x), Prove that (dy)/(dx) = cos 2x.

If y= cot ^(-1)""(b-ax)/(a+bx), then the value of (dy)/(dx) is-