Home
Class 12
MATHS
show that the sum of the two integrals i...

show that the sum of the two integrals `int_(-4)^(-5) e^((x+5)^2)dx+3int_(1/3)^(2/3) e^(9(x-2/3)^2)dx` is zero

Text Solution

Verified by Experts

`I=int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^(9(x-2/3)^(2))dx`
`=int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^((3x-2)^(2))dx`
`=I_(1)+I_(2)`
Note that in both `I_(1)` and `I_(2)`, function has same form i.e. `e^(t^(2))`.
Also `e^(t^(2))` is no integrable.
Now in `I_(1)` let `x+t=y` and in `I_(2)`. Let `3x-2=-t`. Then
`I=int_(0)^(0)e^(y^(2))dy+int_(1)^(0)(-dt)=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-4)^(-5)e^((x+5)^2)dx+3int_(1/3)^(2/3)e^(9(x-2/3)^2)dx

Evaluate: int_(-4)^(-5)e^(x+5)^2dx+3int_(1/3)^(2/3)e^9(x-2/3)^2dx

Evaluate int_(-4)^(-5)e^((x+5)^(2))dx+3int_(1//3)^(2//3)e^(9(x-2/3)^(2))dx .

Evaluate int_(-4)^(-5)e^((x+5)^2) dx+3int_(1//3)^(2//3)e^(9(x-(2)/(3))^(2)dx

Evaluate: int_(-4)^(-5)e^((x+5)^(2))dx+3int_((1)/(3))^((2)/(3))e^(9(x-(2)/(3))^(2))dx

int_(2)^(3)e^(2x)dx

Evalute the following integrals int x^(3) e^(2x) dx

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx