Home
Class 12
MATHS
If a+b=1,a >0, prove that (a+1/a)^2+(b+1...

If `a+b=1,a >0,` prove that `(a+1/a)^2+(b+1/b)^2geq(25)/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=1,a>0, prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a + b = 1, a gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b - 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b = 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a+b=1, and a,b>0, then prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a + b + c = 0 , then prove that 1/(2a^2+bc)+1/(2b^2+ca)+1/(2c^2+ab)=0

If a,b>0 prove that [(1+a)(1+b))^(3)>3^(3)a^(2)b^(2)