Home
Class 12
MATHS
sin y=n sin(a+y)...

sin y=n sin(a+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), then (dy)/(dx) is (a) (sin a)/(sin a sin^(2)(a+y))(b)(s in^(2)(a+y))/(sin a)(c)sin a sin^(2)(a+y)(d)(sin^(2)(a-y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y=sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If sin y=x sin (a+y) , then dy/dx =

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

Prove that : sin x sin y sin (x - y) + sin y sin z sin (y- z)+ sin z sin x sin (z - x) + sin (x - y) sin (y-z)sin (z- x) = 0 .

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .