Home
Class 14
MATHS
" Prove that) "cot^(2)A-tan^(2)A=4cot2A ...

" Prove that) "cot^(2)A-tan^(2)A=4cot2A csc2A

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(2)A-tan^(2)A=4cot2A cos ec2A

Prove that: cot^2A-tan^2A=4\ cot2A cos e c2A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that cot(theta/2)-tan(theta/2)=2cot theta

(b) prove that tan^(2)A+cot^(2)A+2=sec^(2)A*cosec^(2)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to