Home
Class 12
MATHS
[vec a,vec b" and "vec c" are three copl...

[vec a,vec b" and "vec c" are three coplanar unit vectors such that "vec a+vec b+vec c=0." If three vectors "p,q" and "r" ar "],[" parallel to "vec a,vec b" and "vec c," respectively,and have integral but different magnitudes,then among th "],[" following options,"|vec p+vec q+vec r|" can take a value equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to a. 1 b. 0 c. sqrt(3) d. 2

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to a. 1 b. 0 c. sqrt(3) d. 2

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to a. 1 b. 0 c. sqrt(3) d. 2

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q , and vec r are parallel to vec a , vec b , and vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]