Home
Class 12
MATHS
If y = 1 + x1/(x-x1) + x2 /((x-x1)(x2)) ...

If `y = 1 + x_1/(x-x_1) + x_2 /((x-x_1)(x_2)) + x_3 x^2 /((x-x_1)(x-x_2)(x_x_3))` + ....upto (n+1) terms that `dy/dx = y/x ( x_1/(x_1-x) + x_2/(x_2-x) + ......+ x_n/(x_n-x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+(x_(1))/(x-x_(1))+(x_(2))/((x-x_(1))(x_(2)))+x_(3)(x^(2))/((x-x_(1))(x-x_(2))(x_(x)-3))(dy)/(dx)=(y)/(x)((x_(1))/(x_(1)-x)+(x_(2))/(x_(2)-x)+......+(x_(n))/(x_(n)-x))

If y=tan^(-1)(1/(x^2+x+1))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7)) + ..... to n terms, show that (dy)/(dx)=1/((x+n)^2+1)-1/(x^2+1)

If y=tan^(-1)(1/(x^2+x+1))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7))+..... to nterms, show that (dy)/(dx)=1/((x+n)^2+1)-1/(x^2+1)

If y=tan^(-1)(1/(x^2+x+1))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7))+..... to nterms, show that (dy)/(dx)=1/((x+n)^2+1)-1/(x^2+1)

Find the sum of (x + (1)/(x))^(2), (x^(2) + (1)/(x^(2)))^(2), (x^(3) + (1)/(x^(3)))^(2) , ……..to n terms

If x_(1),x_(2),x_(3)...x_(n) are in H.P,then prove that x_(1)x_(2)+x_(2)x_(3)+xx x-3x_(4)+...+x_(n-1)x_(n)=(n-1)x_(1)x_(n)

If y = tan^(-1) ((1)/(1 + x + x^(2))) + tan^(-1) ((1) /(x^(2) + 2x + 3)) + tan^(-1) ((1)/(x^(2) + 5x + 7)) + ….n terms , then y(0) is