Home
Class 14
MATHS
If a^x=b^y=c^z \ and\ b^2=a c ,\ then\ y...

If `a^x=b^y=c^z \ and\ b^2=a c ,\ then\ y` equals a. `(xz)/(x+z)` b. `(x z)/(2(x-z))` c. `(x z)/(2(z-x))` d. `(2x z)/((x+z))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)backslash and quad b^(2)=ac, then y equals a.(xz)/(x+z) b.(xz)/(2(x-z)) c.(xz)/(2(z-x))d .(2xz)/((x+z))

If a^x=b^y=c^z and b^2=a c , then show that y=(2z x)/(z+x)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

if a^(x)=b^(y)=c^(z) and b^(2)= acprove that y=(2xz)/(x+z)

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

If x/(b +c) = y/(c+a) = z/(a + b) , then show that a/(y+z-x) = b/(z+x - y) = c/(x + y - z) .

If aY+z)=b(z+x)=c(x+y) and out of a,b,c no two of them are equal then show that, (y-z)/(a(b-c))=(z-x)/(b(c-a))(x-y)/(c(a-b))

If (a)/(x-a) + (b)/(y-b) + (c )/(z-c)=2 find (x)/(x-a) + (y)/(y-b) + (z)/(z-c) = ?

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .