Home
Class 12
MATHS
Let f(x)=lT(h->0) (sin(x+h)^(In(x+h))-(s...

Let `f(x)=lT_(h->0) (sin(x+h)^(In(x+h))-(sin x)^(Inx))/h` then `f(pi/2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

f(x)=(lim)_(h rarr0)((sin(x+h))^(1n(x+h))-(sin x)^(1nx))/(h) Then f((pi)/(2)) equal to (a)0(b) equal to 1(c)In(pi)/(2) (d) non-existent

Q.Let f(x)=lim_(x rarr0)(((sin(x+h))^(ln(x+h))-(sin x)^(ln x))/(h)) then the value of f((pi)/(2)) is

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

"If "f(x)=lim_(hrarr0) ((sin(x+h))^(log_(e)(x+h))-(sin x)^(log_(e)x))/(h)" then find "f(pi//2).

Show that lim_(h rarr0)((sin(x+h))^(x+h)-(sin x)^(x))/(h)=(sin x)^(x)[x cot x+In sin x]

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)