Home
Class 12
MATHS
Let overline a be vectors parallel to li...

Let `overline a` be vectors parallel to line of intersection of planes `p_1 and p_2` through origin. If `p_1` is parallel to the vectors `2overline j + 3 overline k and 4overline j - 3 overline k and p_2` is parallel to `overline j - overline k and 3overline i - 3overline j,` then the angle between `overline a and 2overline i + overline j - 2overlinek` is (A) `pi/2` (B) `pi/4` (C) `pi/3` (D) `pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

For three vectors overline(p),overline(q) and overline ( r) , if overline( r) =3 overline(p)+4overline(q) and 2 overline( r) = overline(p) - 3overline(q) then

The work done by a force overlineF = 2 overline i- overline j-overline k in moving an object from origin to a point whose position vector is overline r = 3 overline i + 2 overline j - 5 overline k .

If the angle between overline(a) and overline(b) is (pi)/(6) and overline(c)=overline(a)+3overline(b) , then c^(2)=

If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b)|=b and the angle between overline(a) and overline(b) is (pi)/(3) , then c^(2) =

If the angle between overline(b) and overline(c) is (pi)/(3) and overline(a)=overline(b)+4overline(c) , then a^(2)=

If overline(c)=3overline(a)-2overline(b) , then [[overline(a), overline(b), overline(c)]]=

If overline(a) is perpendicular to overline(b) and overline(c), |overline(a)|=2, |overline(b)=3, |overline(c)|=4 and the angle between overline(b) and overline(c) is (2pi)/(3) , then |[[overline(a), overline(b), overline(c)]]|=