Home
Class 12
MATHS
If |z + 2i| <= 1 and z1 = 6 - 3i then th...

If `|z + 2i| <= 1` and `z_1` = 6 - 3i then the maximum value of `|iz + z_1 - 4|` is equal to

Text Solution

Verified by Experts

`|z+2i|<=1`
`z+2i<=e^i`
`z<=-2i+e^(itheta)`
`|iz+zi-4|=|iz+6-3i-4|`
`=|iz+2-3i|`
`=|2+e^(i(theta+pi/2) +2-3i|`
`=|4-3i+e^(1(theta+pi/2)|`
=6
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S = {z in C : |z - 2| = |z + 2i| = |z - 2i|} then sum_(z in S) |z + 1.5| is equal to _________

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

For complex number z =3 -2i,z + bar z = 2i Im(z) .

Solve the equation 2z= |z| + 2i is complex numbers

Find the equation in cartesian co-ordinates of the locus of z if. | z - 2 - 2i | = | z + 2 + 2i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :