Home
Class 12
MATHS
The sum of n terms : tan^-1(1/(1+x+x^2))...

The sum of n terms : `tan^-1(1/(1+x+x^2))+tan^-1(1/(3+3x+x^2))+tan^-1(1/(7+5x+x^2))+tan^-1(1/(13+7x+x^2))+....`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+5x+x^2))+tan^(-1)(1/(13+7x+x^2)) of first 100 terms of the series is

The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+5x+x^2))+tan^(-1)(1/(13+7x+x^2)) of first 100 terms of the series is

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13)) ......upto n.

Sum the series tan^-1 (x/(1+1*2x^2))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

Find the sum of each of the following series: (i) tan^(-1)((1)/(x^(2)+x+1))+tan^(-1)((1)/(x^(2)+3x+3))+tan^(-1)((1)/(x^(2)+5X+7))+tan^(-1)((1)/(x^(2))+7x+13))...... upto n.

Sum the series tan^-1 (x/(1+1*2x^1))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

Find x if tan^(-1)(x) = tan^(-1)(1/2) + tan^(-1)(3/7)

Solve the Equation : tan^-1 ((x+1)/(x-1)) + tan^-1 ((x-1)/x) = tan^-1 (-7)