Home
Class 12
MATHS
If y = tan^(-1)(u/sqrt(1-u^2)) and x = ...

If `y = tan^(-1)(u/sqrt(1-u^2))` and `x = sec^(-1)(1/(2u^2-1))`, ` u in (0,1/sqrt2)uu(1/sqrt2,1)`, prove that `2dy/dx+ 1 = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is