Home
Class 12
MATHS
Let ai^2+bi^2+ci^2=1 (for i=1,2,3) and ...

Let `a_i^2+b_i^2+c_i^2=1` (for i=1,2,3) and `a_ia_j+b_ib_j+c_ic_j=0 (i != j;i,j=1,2,3).` Then the absolute value of determinant `|(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)|` (A) `1/2` (B) 0 (C) 1 (D) 2

Text Solution

Verified by Experts

Let `vecp = a_1hati+b_1hatj+c_1hatk`,
`vecq = a_2hati+b_2hatj+c_2hatk`,
`vecr = a_3hati+b_3hatj+c_3hatk`
Here, we are given, for `(i=1,2,3)`,
`a_i^2+b_i^2+c_i^2 = 1`
It means, `|vecp|=|vecp|=|vecp| = 1`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Given a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3) , then the value of the determinant |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))| , is

Given a_(i)^(2) + b_(i)^(2) + c_(i)^(2) = 1, i = 1, 2, 3 and a_(i) a_(j) + b_(i) b_(j) + c_(i) c_(j) = 0 (i !=j, i, j =1, 2, 3) , then the value of the determinant |(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))| , is

The determinant |(b_1+c_1,c_1+a_1,a_1+b_1),(b_2+c_2,c_2+a_2,a_2+b_2),(b_3+c_3,c_3+a_3,a_3+b_3)|=

If x_i=a_i b_i c_i,i=1,2,3 are three-digit positive integer such that each x_1 is a multiple of 19, then for some integers n , prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]| is divisible by 19.

If a_i , i= 1,2,3,4 be four real members of same sign, then the minimum value of sum (a_i/a_j) , i , j in {1,2,3,4} , i != j is : (a) 6 (b) 8 (c) 12 (d) 24

If delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

If Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat ka n d vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the angle between aa n db is pi/6, then prove that |(a_1 a_2a_3)(b_1b_2b_3)(c_1c_2c_3)|=1/4(a1 2+a2 2+a3 2)(b1 2+b2 2+b3 2)