Home
Class 12
MATHS
If atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^...

If `atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a` where a is a constant and `alpha,beta and gamma` are variable angles. Then the least value of `tan^2alpha+tan^2beta+tan^2gamma` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a tanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a where a is a constant and alpha,beta and gamma are variable angles. Then the least value of tan^2alpha+tan^2beta+tan^2gamma is equal to

If alpha + beta =(pi)/(2)and beta + gamma =alpha, then the value of tan alpha is -

If alpha,beta,gamma are acute angle such that cos alpha=tan beta,cos beta=tan gamma and cos gamma=tan alpha then

If alpha, beta, gamma are acute angles and cos theta = sin beta//sin alpha, cos phi = sin gamma//sin alpha and cos(theta-phi)=sin beta sin gamma then the value of of tan^(2)alpha - tan^(2)beta- tan^(2)gamma is equal to

IF alpha+beta=pi/2 and gamma+beta=alpha then find tan alpha .

If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then prove that tan alpha=tan beta+2 tan gamma .

If a straight line makes angles alpha,beta,gamma with the coordinate axes, then (1-"tan"^(2)alpha)/(1+"tan"^(2)alpha)+1/("sec"2beta)-2"sin"^(2)gamma is equal to