Home
Class 12
MATHS
Statement 1: lim(x->0) sqrt(1-cos 2x)/x ...

Statement 1: `lim_(x->0) sqrt(1-cos 2x)/x` does not existe . Statement 2: `f(x)=sqrt(1-cos 2x)/x` is not defined at x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sqrt(1-cos2x))/x

lim_(x to0)sqrt(1+cos2x)/x.......

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

Statement -1 : lim_(xrarralpha) sqrt(1-cos 2(x-alpha))/(x-alpha) does not exist. Statement-2 : lim_(xrarr0) (|sin x|)/(x) does not exist.

Statement -1 : lim_(xrarralpha) sqrt(1-cos 2(x-alpha))/(x-alpha) does not exist. Statement-2 : lim_(xrarr0) (|sin x|)/(x) does not exist.

Statement 1: lim x ->0 ((sqrt(1-cos2x)) logcosx)/x^2 does not exist. Statement 2: |sinx| = { sinx, 0

Statement-I underset(x to 0)(Lt)(sqrt((1 -cos 2x)/(2)))/(x) does not exist . Statement-II : f(x) = |x| is continuous on R Which of the above statement is correct

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-