Home
Class 12
MATHS
Statement 1: lim(x->0) [ tan^-1/x]=0, wh...

Statement 1: `lim_(x->0) [ tan^-1/x]=0`, where [.] represents greatest integer function. Statement 2: `tan^-1/x < 1` in the neighbourhood of `x=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate: int_(0)^(10 pi)[tan^(-1)x]dx, where [x] represents greatest integer function.

Solve lim_(xtooo) [tan^(-1)x] (where [.] denotes greatest integer function)

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function