Home
Class 12
MATHS
If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0...

If `f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):}`, `(n in I)`, then (a) `lim_(xrarr0)f(x)` exists for `n >1` (b) `lim_(xrarr0)f(x)` exists for `n<0` (c) `lim_(xrarr0)f(x)` does not exist for any value of `n` (d) `lim_(xrarr0)f(x)` cannot be determined

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

Evaluate lim_(xrarr0) f(x) , where

Evaluate lim_(xrarr0) f(x) , where

If lim_(xrarr0)(f(x))/(x^2)=k ne 0 then lim_(xrarr1)f(x) =……….

Let f(x)={:{((3x)/(|x|+2x)',xne0),(0",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Show that lim_(xrarr0)1/x does not exist.

lim_(xrarr0^(+))(x^(n)lnx), n gt0

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.