Home
Class 12
MATHS
sum(r=0)^oo tan^-1((r((r+1)!))/((r+1)+((...

`sum_(r=0)^oo tan^-1((r((r+1)!))/((r+1)+((r+1)!)^2))` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^oo tan^-1((6^r)/(2^(2r+1)+3^(2r+1)))

sum_(r=1)^9 tan^-1(1/(2r^2)) =

The value of sum_(r=1)^(oo)tan^(-1)((2r-1)/(r^(4)-2r^(3)+r^(2)+1)) is equal to

sum_(r=1)^(oo)tan^(-1)((2)/(1+(2r+1)(2r-1)))

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

sum_(r=1)^(n)sin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to

sum_(r=1)^(n)sin^(-1)((sqrt(r)-sqrt(r-1))/sqrt(r(r+1))) is equal to

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to