Home
Class 10
MATHS
Delta(0)=(1)/(a+b+x)>=(1)/(a)(1+1)/(x)...

Delta_(0)=(1)/(a+b+x)>=(1)/(a)(1+1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for 'x' : (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x) " " a != 0, b!=0, x !=0

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

Let A(0,-1),B(0,3)andC(2,1) be three points Let Delta_(1) be the area of the triangle ABC and Delta_(2) be the area of the triangle formed by the mid points of the sides of the triangle whose vertices are A,B and C such that (Delta_(1))/(Delta_(2))=(1)/(x) Find the value of x.

If Delta (x)= |(1,cos x,1-cos x),(1+sin x ,cos x,1+sin x-cos x),(sin x,sin x,1)| , then int_(0)^(pi//2) Delta (x) dx= a) (-1)/(2) b) (1)/(2) c)1 d) -1

If Delta_(1)=|(x,b,b),(a,x,b),(a,a,x)|andDelta_(2)=|(x,b),(a,x)| are the given determinants, then a) Delta_(1)=3(Delta_(2))^(2) b) (d)/(dx)(Delta_(1))=3Delta_(2) c) (d)/(dx)(Delta_(1))=3(Delta_(2))^(2) d) Delta_(1)=3Delta_(2)^(3//2)

If (a_(1)//x)+(b_(1)//y)=c_(1),(a_(2)//x)+(b_(2)//y)=c_(2) Delta_(1)=|{:(a_(1),b_(1)),(a_(2),b_(2)):}|,Delta_(2)=|{:(b_(1),c_(1)),(b_(2),c_(2)):}|," "Delta_(3)=|{:(c_(1),a_(1)),(c_(2),a_(2)):}| , then (x, y) is equal to which one of the following ?

Let x=1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+alpha))))). Which of the following is correct? x^(2)+x+1=0 (b) x^(2)-x+1=0( c) x^(2)+x-1=0 (d) x^(2)-x-1=0

Let a_(1)x^(2)+b_(1)x + c_(1)=0 and a_(2)x^(2)+b_(2)x+c_(2)=0 be the quaratic such that Delta_(1)=b_(1)^(2)-4a_(1)c_(1) and Delta_(2)=b_(2)^(2)-4a_(2)c_(2) . Statement 1 : Atleast one of the given equations have imaginary roots if and only if Delta_(1)+Delta_(2)lt 0 . because Statement 2 : If Delta_(1)+Delta_(2)lt 0 , then atleast one of the Delta_(1) and Delta_(2) is negative.

If alpha,beta,gamma,delta in R satisfy ((alpha+1)^(2)+(beta+1)^(2)+(gamma+1)^(2)+(delta+1)^(2))/(alpha+beta+gamma+delta)=4 If biquadratic equation a_(0)x^(4)+a_(1)x^(3)+a_(2)x^(2)+a_(3)x_(a-)-4=0 has (alpha+(1)/(beta)-1),(beta+(1)/(gamma)-1),(gamma+(1)/(delta)-1),(delta+(1)/(alpha)-1) then the value of (a_(2))/(a_(0)) is