Home
Class 12
MATHS
The total number of matrices A = [{:(0,...

The total number of matrices `A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y, ):}] (x, y in R, x ne y) " for which "A^(T)A = 3I_(3)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y, 1):}] (x, y in R, x ne y) for which A^(T)A = 3I_(3) is

Let A=[{:(0,2y,1),(2x,y,-1),(2x,-y,1):}] then number of possible matrices that A A^(T)=3I_(3) is

Solve: 3 (2x+ y ) = 7xy 3(x+ 3y ) = 11xy , x ne 0 , y ne 0

A = {(x,y) : y = 1//x,0 ne x in R} , B = {(x, y) : y = - x, x in R} then

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve for x and y : (1)/( 7x ) + ( 1) /( 6y) = 3, (1)/( 2x) - (1)/( 3y ) = 5 (x ne 0, y ne 0)

Solve y^'= (y(x-2 y))/(x(x-3 y)), x ne 0, x ne 3 y^

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )