Home
Class 11
MATHS
Let f(x) be a differentiable function su...

Let `f(x)` be a differentiable function such that `f(x)=x^2 +int_0^x e^-t f(x-t) dt` then `int_0^1 f(x) dx=`

A

injective but not surjective

B

surjective but not injective

C

bijective

D

neither injective nor surjective

Text Solution

Verified by Experts

`f(x)=x^(2)+int_(0)^(x)e^(-t)(x-t)dt`………….1
`x^(2)+int_(0)^(x)e^(-x-t)f(x-(x-t))dt`
[Using `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`]
`=x^(2)+e^(-x)int_(0)^(x)e^(t)f(t)dt`……………..2
Differentiating w.r.t.`x` we get
`f'(x)=2x-e^(-x)int_(0)^(x)e^(t)f(t)dt+e^(-x)e^(x)f(x)`
`=2x-e^(-x)int_(0)^(x)e^(t)f(t)dt+f(x)`
`=2x+x^(2)` [using equation 2]
`:. f(x)=(x^(3))/3+x^(2)+c`
Also `f(0)=0` [from equation 1]
or `f(x)=(x^(3))/3+x^(2)`
or `f'(x)=x^(2)+2x`
Thus `f'(x)=` has real roots. Hence `f(x)` is non monotonic.
Hence `f(x)` is many one but range is `R` and hence, is surjective
`int_(0)^(1)f(x)dx=int_(0)^(1)((x^(3))/3+x^(2))dx`
`=[(x^(4))/12+(x^(3))/3]_(0)^(1)`
`=1/12+1/3`
`=5/12`
Promotional Banner

Similar Questions

Explore conceptually related problems

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then prove that f(x)=(x^(3))/(3)+x^(2)

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for