Home
Class 14
MATHS
I=int e^(x)*(tan x-log cos x)dx...

I=int e^(x)*(tan x-log cos x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int e^(x)(tan x-log cos x)dx

Integrate: int e^(x)( tan x- log cos x)dx

Evaluate: int e^(x)(tan x+log sec x)dx

If int e^x (tanx - log cos x) dx = f(x) log sec x then range of f(x) is

Evaluate: int e^(x) (tan x + log sec x) dx .

int (tan x)/(log (cos x))dx

int e^x (tan x + log sec x)dx is equal to :

int e^(3x)((3+tan x)/(cos x))dx

int e^(3x)((3+tan x)/(cos x))dx

int e^(ln(tan x))dx