Home
Class 12
MATHS
int-n^n (-1)^([x])\ dx when n in NN = in...

`int_-n^n (-1)^([x])\ dx` when `n in NN` = in all of these [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(-1)^(10)sgn(x-[x])dx is equal to (where,[:] denotes the greatest integer function

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).

Evaluate int_0^a[x^n]dx, (where,[*] denotes the greatest integer function).