Home
Class 12
MATHS
" "Ifa "y=sqrt((1-x)/(1+x))," " "f" thes...

" "Ifa "y=sqrt((1-x)/(1+x))," " "f" thes "(x)/(x)" iffor "f(1-x^(2))(dy)/(dx)+y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If y=f(cosx)" and "f'(x)=cos^(-1)x," then "(dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=

I.F.for y in y(dx)/(dy)+x-ln y=0 is

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then (dy)/(dx) at x=1, is

A: If y = x ^(y) then (dy)/(dx) = (y ^(2))/(x(1- log y )) If y = f (x) ^(y), then (dy)/(dx) = (y ^(2) f '(x))/(f (x) [1- ylog f (x)])= (y ^(2) f'(x))/(f (x) [1- log y])