Home
Class 12
MATHS
The direction cosines of two lines are r...

The direction cosines of two lines are related by `l + m + n = 0 and al^2 + bm^2 + cn^2=0`. The linesare parallel if

Promotional Banner

Similar Questions

Explore conceptually related problems

If the direction cosines of two lines are connected by the equations l+m+n=0 and l^(2) + m^(2) -n^(2)=0 , then the angle between these lines is of measure

The direction cosines of two lines satisfying the conditions l + m + n = 0 and 3lm - 5mn + 2nl = 0 where l, m, n are the direction cosines. Angle between the lines is

The direction cosines of two lines satisfying the conditions l + m + n = 0 and 3lm - 5mn + 2nl = 0 where l, m, n are the direction cosines. Angle between the lines is

The direction cosines of two lines satisfying the conditions l + m + n = 0 and 3lm - 5mn + 2nl = 0 where l, m, n are the direction cosines. The value of lm+mn + nl is

The direction cosines of two lines satisfying the conditions l + m + n = 0 and 3lm - 5mn + 2nl = 0 where l, m, n are the direction cosines. The value of lm+mn + nl is

Supose directioncoisnes of two lines are given by u l+vm+wn=0 and al^2+bm^2+cn^2=0 where u,v,w,a,b,c are arbitrary constnts and l,m,n are directioncosines of the lines. For u=v=w=1 directionc isines of both lines satisfy the relation. (A) (b+c)(n/l)^2+2b(n/l)+(a+b)=0 (B) (c+a)(l/m)^2+2c(l/m)+(b+c)=0 (C) (a+b)(m/n)^2+2a(m/n)+(c+a)=0 (D) all of the above

Supose directioncoisnes of two lines are given by u l+vm+wn=0 and al^2+bm^2+cn^2=0 where u,v,w,a,b,c are arbitrary constnts and l,m,n are directioncosines of the lines. For u=v=w=1 directionc isines of both lines satisfy the relation. (A) (b+c)(n/l)^2+2b(n/l)+(a+b)=0 (B) (c+a)(l/m)^2+2c(l/m)+(b+c)=0 (C) (a+b)(m/n)^2+2a(m/n)+(c+a)=0 (D) all of the above