Home
Class 12
MATHS
If (1+x)^n = C0+C1x+C2x^2+...+Cnx^n, the...

If `(1+x)^n = C_0+C_1x+C_2x^2+...+C_nx^n,` then `2C_0+C_1/2+2^3C_2/3+...+2^(n+1)C_n/(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , then C_0C_2+C_1C_3+C_2C_4+...+C_(n-2)C_n= a. ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , then C_0C_2+C_1C_3+C_2C_4+...+C_(n-2)C_n= a. ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If (1+x)^n=C_0+C_1x+C_2x^2+…..+C_nx^n .then show that C_1+2C_2+…. nC_n=n.2^(n-1) .

If (1+x)^n=C_0+C_1x+C_2x^2+C_3x^3+...+C_nx^n then prove that 2.C_0+2^2C_1/2+2^3C_2/3+2^4C_3/4+...+2^(n+1)C_n/(n+1)=(3^(n+1)-1)/(n+1)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to