Home
Class 12
MATHS
2*^nC0+2^2*(.^nC1)/2+2^3*(.^nC2)/3+...+2...

`2*^nC_0+2^2*(.^nC_1)/2+2^3*(.^nC_2)/3+...+2^(n+1)*(.^nC_n)/(n+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

1/2. ""^nC_0 + ""^nC_1 + 2. ""^nC_2 + 2^2. ""^nC_3 + …….+ 2^(n-1) . ""^nC_n =

Prove that ""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)""^nC_n=(n+2)2^(n-1)

Let S=2/1 ^nC_0+2^2/2 ^nC_1+2^3/3 ^nC_2+....+2^(n+1)/(n+1) ^nC_n . Then S equals

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

Prove that (""^nC_1)/(""^nC_0)+2*(""^nC_2)/(""^nC_1)+3*(""^nC_3)/(""^nC_2)+...+n*(""^nC_n)/(""^nC_(n-1))=frac{n(n+1)}{2}

nC_(0)-(1)/(2)(^(^^)nC_(1))+(1)/(3)(^(^^)nC_(2))-....+(- 1)^(n)(nC_(n))/(n+1)=

If s_n=""^nC_0+2*""^nC_1+3*""^nC_2+...+(n+1)*""^nC_n then find sum_(n=1)^oos_n .