Home
Class 12
MATHS
Sn=1/(1^3)+(1+2)/(1^3+2^3)+(1+2+3)/(1^3+...

`S_n=1/(1^3)+(1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3)+.........+(1+2+.....+n)/(1^3+2^3+......+n^3).100 S_n=n` then `n` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

S_(n)=(1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......+(1+2+....+n)/(1^(3)+2^(3)+......+n^(3)).100S_(n)=n then n is equal to :

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]

If S_n=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) Then S_n is not greater than

If =(1)/(1^(3))+(1+2)/(1^(3)+2^(3))+...+(1+2+3+...+n)/(1^(3)+2^(3)+3^(3)+...+n^(3)) Then S_(n) is not greater than

Let S_(n) = ( 1)/( 1^(3)) + ( 1+2)/( 1^(3) + 2^(3)) +"...." + ( 1+ 2 + "...." + n)/(1^(3) +2^(3)"...."+n^(3)), n = 1,2,3,"....." , Then S_(n) is not greater than :

If the sum of n terms of the series : (1)/( 1^(3)) +( 1+2)/( 1^(3) + 2^(3)) +(1+2+3)/(1^(3) + 2^(3) + 3^(3)) + "......." in S_(n) , then S_(n) exceeds 199 for all n greater than :

If (1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......n terms then lim_(n rarr oo)[S_(n)]

1.3+2.3^(2)+3.3^(3)+............+n.3^(n)=((2n-1)3^(n+1)+3 )/(4)

If the sum of n terms of the series 1/1^3+(1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3)+..... is S_n , then S_n exceeds 1.99 for all n greater than