Home
Class 14
MATHS
[" 188"499a:(b+c)=1:3727c:(a+b)=5:7vec s...

[" 188"499a:(b+c)=1:3727c:(a+b)=5:7vec s|],[" (A) "b:(a+c)" aplar "vec s|r|-],[[" (A) "J:2," (B) "2:3],[" (C) "1:3," (D) "2:1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a = hat i + hat j + hat k, vec b = hat i + 4 hat j - hat k, vec c = hat i + hat j + 2 hat k and hat s be a the unit vector the magnitude of the vector (vec a .vec s)(vec b xx vec c) + (vec b. vec s)(vec c xx vec a) + ( vec c.vec s)(vec a xx vec b) is equal to (A) 1 (B) 2 (C) 3 (D) 4

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

vec a+vec b+vec c=vec 0,|vec a|=3,|vec b|=5,|vec c|=7 then the angle between vec a and vec b is (pi)/(6) b.(2 pi)/(3) c.(5 pi)/(3)d*(pi)/(3)

Let vec(a), vec(b), vec(c ) be such that vec(c ) ne vec(0), vec(a) xx vec(b)= vec(c ) and vec(b) xx vec(c )= vec(a) then show that vec(a), vec(b) and vec(c ) are pairwise perpendicular, |vec(b)|=1 and |vec(c )|= |vec(a)| .

The vectors vec(a),vec(b),vec (c ) are such that vec(a) + vec(b) + vec ( c ) = vec(0) . If |vec(a)| = 3 , |vec(b)|= 4 and |vec(c )|= 5 , show that vec(a).vec(b) +vec(b) .vec(c ) + vec (c ) . vec(a) = - 25

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .