Home
Class 8
MATHS
(3)/(x+1)-(2)/(x-1)=(5)/(x^(2)-1)...

`(3)/(x+1)-(2)/(x-1)=(5)/(x^(2)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+1)/(2)+(x-1)/(3)=(5)/(12)(x-2)

(5x-1)/(x^(2)+3)<1

Solve for : :(3)/(x+1)-(1)/(2)=(2)/(3x-1),x!=(3)/(5),-(1)/(7)

value of the limit when x tends to unity of the expression ([(3+x)^((1)/(2))-(5-x)^((1)/(2))])/(x^(2)-1) is

int(x+(1)/(x))^(3/2)((x^(2)-1)/(x^(2)))dx is equal to (A) (1)/(3)(x+(1)/(x))^(3)+C (B)(2)/(5)(x+(1)/(x))^(5/2)

(1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=