Home
Class 11
MATHS
Let a function f: R -> R be defined as f...

Let a function `f: R -> R` be defined as `f(x)=x + sin x`. The value of `int_0^(2pi) f^-1 (x) dx` will be (A) `2pi^2` (B) `2pi^2+2` (C) `2pi^2-2` (D) `pi^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

The value of int_0^pi (sin(1+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, n in I (a) pi/2 (b) 0 (c) pi (d) 2pi

If f(x)=sin x-x, then int_(-2 pi)^(2 pi)|f^(-1)(x)|dx= (A) pi^(2)(B)2 pi^(2)(C)3 pi^(2)(D)4 pi^(2)

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If int_0^pi x f(sinx) dx=A int_0^(pi/2) f(sinx)dx , then A is (A) pi/2 (B) pi (C) 0 (D) 2pi

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :