Home
Class 11
MATHS
If A=[[cos alpha, -sin alpha] , [sin alp...

If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A =[[cos alpha,-sin alpha],[sinalpha, cos alpha]] , B= [[cos 2 beta, sin 2 beta],[sin beta ,-cos beta]] where 0 lt beta lt pi/2 , then prove that BAB=A^(-1) . Also, find the least value of alpha of which BA^(4) B= A^(-1)

If A=[[cos alpha,-sin alphasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin alpha,cos alpha]],B=[[cos2 beta,sin2 betasin2 beta,-cos2 beta]] where 0

If A = [(cos alpha, sin alpha),(sin alpha, cos alpha)] and B = [(cos beta, sin beta),(sin beta, cos beta)] show that AB = BA

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

If cos alpha+cos beta=0=sin alpha+sin beta , then cos 2 alpha+cos 2beta is equal to

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

If cos alpha + cos beta =0 = sin alpha + sin beta , then cos 2 alpha + cos 2 beta is equal to

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is