Home
Class 9
MATHS
The product (a+b)(a-b)(a^2-a b+b^2)(a^2+...

The product `(a+b)(a-b)(a^2-a b+b^2)(a^2+a b+b^2)` is equal to: (a)`a^6+b^6` (b) `a^6-b^6` (c) `a^3-b^3` (d) `a^3+b^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The product (a+b)(a-b)(a^(2)-ab+b^(2))(a^(2)+ab+b^(2)) is equal to: a^(6)+b^(6)(b)a^(6)-b^(6)(c)a^(3)-b^(3)(d)a^(3)+b^(3)

a^3 x 2a^2b x 3a b^5 is equal to: (a) a^6b^6 (b) 23 a^6b^6 (c) 6a^6b^6 (d) None of these

4 a 2 b 3 x 3a b 2 x 5 a 3 b is equal to: (a) 60 a 3 b 5 (b) 60 a 6 b 5 (c) 60 a 6 b 6 (d) a 6 b 5

Simplify (a+b)^3+(a-b)^3+6a(a^2-b^2)

The product of 4a^(2),-6b^(2) and 3a^(2)b^(2) is

a^(3)x2a^(2)bx3ab^(5) is equal to: a^(6)b^(6)(b)23a^(6)b^(6)(c)6a^(6)b^(6)(d) None of these

4 a 2 b 3 x 3a b 2 x 5 a 3 b is equal to: 60 a 3 b 5 (b) 60 a 6 b 5 (c) 60 a 6 b 6 (d) a 6 b 5

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc

(2a+b)^2-6a-3b-4

Find the product: (2a-3b-2c)(4\ a^2+\ 9\ b^2+\ 4\ c^2+\ 6\ a b-6\ b c+4c a)