Home
Class 11
MATHS
Let f: RvecR be such that f(x)=2^x . Det...

Let `f: RvecR` be such that `f(x)=2^x` . Determine: Range of `f` (ii) `{x :f(x)=1}` (iii) Whether `f(x+y)=f(x)f(y)` holds.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R\rightarrowR be such that f(x)=2^x . Determine: Range of f (ii) {x :f(x)=1} (iii) Whether f(x+y)=f(x)f(y) holds.

Let f:R rarr R be such that f(x)=2^(x) Determine: Range of f( ii) quad {x:f(x)=1} (iii) Whether f(x+y)=f(x)f(y) holds.

Let f:RtoR:f(x)=x^(2) . Determine (i) range (f) (ii) {x:f(x)=4}

If f:R rarr R is a function such that f(x)=2^(x), find.(i) range of f( ii) (x:f(x)=1) (iii) f(x+y)=f(x)+f(y) is true or false.

Let f:R rarr R be such that f(x)=2x .Determine whether f(x+y)=f(x).f(y) holds?

A function f: R->R is defined by f(x)=x^2dot Determine Range of f ii. {x :f(x)=4} iii. {y :f(y)=-1}

A function f : R rarr R defined by f(x) = x^(2) . Determine (i) range of f (ii). {x: f(x) = 4} (iii). {y: f(y) = –1}

Let f: R->R whre R^+ is the set of all positive real numbers, be such that f(x)=(log)_e xdot Determine: whether f(x y)=f(x)+f(y) holds.

Let f: R->R whre R^+ is the set of all positive real numbers, be such that f(x)=(log)_e xdot Determine: whether f(x y)=f(x)+f(y) holds.

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.