Home
Class 12
MATHS
Prove that the identities, sin^-1 cos(s...

Prove that the identities, `sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2`,`|x|<=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^-1 (cos(sin^-1x)) + cos^-1 (sin (cos^-1 x))

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

{ cos (sin ^(-1) x)}^(2) ={sin (cos ^(-1) x)}^(2)

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

Prove the following identities : (sin A - cos A + 1)/(sin A + cos A - 1) = (cos A)/ (1 - sin A)