Home
Class 12
MATHS
Number of integral solutions of the equa...

Number of integral solutions of the equation `2 sin^-1sqrt(x^2-x +1 )+ cos^-1sqrt(x^2-x) =3pi/ 2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation 2sin^-1sqrt((x^2-x+1))+cos^-1sqrt((x^2-x))=(3pi)/2

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The sum of the solutions of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3pi)/2 is

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +2) + cos^(-1) sqrt(4x-x^2 - 3) = pi is

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2