Home
Class 12
MATHS
Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=...

Solve `tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)`

A

2

B

3

C

4

D

none of these

Text Solution

Verified by Experts

`tan^(-1).(1)/(1 + 2x) + tan^(-1).(1)/(1 + 4x) = tan^(-1).(2)/(x^(2))`
or `tan^(-1) [((1)/(1 + 2x) + (1)/(1+ 4x))/(1 - (1)/(1 + 2x) (1)/(1 + 4x))] = tan^(-1).(2)/(x^(2))`
or `(2 + 6x)/(6x + 8x^(2)) = (2)/(x^(2))`
or `6x^(3) - 14x^(2) - 12x = 0`
or `x(x -3) (3x + 2) = 0`
or `x = 3 " or " x = -2//3`(as `x != 0`)
But for `x = -2//3`, L.H.S. `lt 0 and R.H.S. gt 0`
Hence, the only solution is `x = 3`
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

Solve: "tan"^(-1) 1/(2x+1) +"tan"^(-1) 1/(4x+1) = "tan"^(-1) 2/x^2

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36