Home
Class 12
MATHS
If f:R-> R such that f(x)=ln(x+sqrt(x^2+...

If `f:R-> R` such that `f(x)=ln(x+sqrt(x^2+1))`. Another function g(x) is defined such `gof(x)=x`, for all `x in R`. Then g(2) is (A) `(e^2+e^-2)/2` (B) `(e^2-e^-2)/2` (C) `e^2` (D) `e^-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) then h'\(1) is equal to (A) 4e (B) 2e^2 (C) 4e^2 (D) e^2

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Consider the function f(x) and g(x) such that f(x)=(x^(2))/(2)+1-x+int g(x)dx Range of the function f(x) is [0,(2)/(e^(2))] (b) [0,(4)/(e^(2))][0,(4)/(e)] (d) (0,e^(2))

Given the function f(x)=x^2e^-(2x) ,x>0. Then f(x) has the maximum value equal to a) e^-1 b) (2e)^-1 . c) e^-2 d) none of these

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

Let e^(f(x))=ln x. If g(x) is the inverse function of f(x), then g'(x) equal to: e^(x)(b)e^(x)+xe^(x+e^(2))(d)