Home
Class 7
MATHS
The product of the coefficients of te...

The product of the coefficients of terms in `-4/3a b^2+1/4b c^2+3c a^2` is 1 (b) `1/2` `-1` (d) `3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of the coefficients of terms in -4/3a b^2+1/4b c^2+3c a^2 is (a)1 (b) 1/2 (c) -1 (d) 3

The sum of the coefficients in the monomials 3a^2b and -2a b^2 is (a)5 (b) -1 (c) 1 (d) -6

If a=2b, then a:b=2:1 (b) 1:2( c) 3:4 (d) 4:3

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

If a=2b ,\ then a : b= (a) 2:1 (b) 1:2 (c) 3:4 (d) 4:3

Match the following. Codes A B C D (A) 4 3 1 2 (B) 2 4 1 3 (C) 3 4 2 1 (D) 3 4 1 2

The lines ax + by + c = 0, where 3a + 2b + 4c= 0, are concurrent at the point (a) (1/2 ,3/4) (b) (1,3) (c) (3,1) (d) (3/4 ,1/2)

The lines ax + by + c = 0, where 3a + 2b + 4c= 0, are concurrent at the point (a) (1/2 ,3/4) (b) (1,3) (c) (3,1) (d) (3/4 ,1/2)