Home
Class 12
MATHS
" Prove that "tan^(-1)x+tan^(-1)y=tan^(-...

" Prove that "tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))quad " when "xy<1

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that xy tan^-1x+tan^-1y=tan^-1(frac(x+y)(1-xy))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

tan^(-1)((x+y)/(1-xy)),xy<1 =

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

The result tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) is true when value of xy is _____