Home
Class 12
MATHS
If a, b in R and z1, z2 are complex num...

If `a, b in R and z_1, z_2` are complex numbers such that `|(az_1-bz_2)/(ab-z_1 bar z_2)| = 1 and |z_2| != a`, then find `|z_1|`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) are complex numbers such that |(z_(1)-3z_(2))/(3-z_(1)bar(z)_(2))|=1 and |z_(2)|!=1 then find |z_(1)|

Let z_(1) and z_(2) be two complex numbers such that |(z_(1)-2z_(2))/(2-z_(1)bar(z)_(2))|=1 and |z_(2)|!=1, find |z_(1)|

If z_1 and z_2 are two complex numbers such that (z_1-2z_2)/(2-z_1bar(z_2)) is unimodular whereas z_1 is not unimodular then |z_1| =

If z_1 , and z_2 be two complex numbers prove that bar(z_1+-z_2)=barz_1+-barz_2

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1 and z_2 are two complex number such that |z_1|<1<|z_2| then prove that |(1-z_1 bar z_2)/(z_1-z_2)|<1