Home
Class 12
MATHS
" If "y=tan^(-1)((sqrt(1+x^(2))-1)/(x))"...

" If "y=tan^(-1)((sqrt(1+x^(2))-1)/(x))" prove that "(dy)/(dx)=(1)/(2(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1)((sqrt(1 + x^2)-1)/(x)) , prove that (dx)/(dy) = 1/(2(1 + x^2))

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y=tan^(-1)sqrt((1-cos x)/(1+cos x)), prove that (dy)/(dx)=(1)/(2)

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=tan^(-1)sqrt(x^(2)+1)+cot^(-1)sqrt(x^(2)+1)" then "(dy)/(dx)=

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y = tan ^ (- 1) ((3x) / (1-2x ^ (2))), - (1) / (sqrt (2))

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=