Home
Class 11
MATHS
Statement-1: If a =y^(2), b=z^(2) " and...

Statement-1: If `a =y^(2), b=z^(2) " and " c= x^(2), " then log"_(a) x^(3) xx "log"_(b) y^(3) xx "log"_(c)z^(3) = (27)/(8)`
Statement-2: `"log"_(b) a = (1)/("log"_(a)b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

a=y^(2),b=z^(2),c=x^(2) then prove that log_(a)x^(3)*log_(b)y^(3)*log_(c)z^(3)=(27)/(8)

Calculate : log_(x^2)x xx log_(y^2)y xx log_(z^2)z

Prove that log_(b^3)a xx log_(c^3)b xx log_(a^3)c = 1/27

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: If a=y^2, b=z^2, c=x^2, t h e n8(log)_a x^3dot(log)_b y^3dot(log)_c z^3=27 Statement II: (log)_b adot(log)_c b=(log)_c a , also (log)_b a=1/("log"_a b) a.A b. B c. C d. D

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: If a=y^2,\ b=z^2, c=x^2,\ t h e n8(log)_a x^3dot(log)_b y^3dot(log)_c z^3=27 Statement II: (log)_b adot(log)_c b=(log)_c a ,\ also (log)_b a=1/("log"_a b) a. A b. \ B c. \ C d. D

Statement I: If a=y^2,\ b=z^2, c=x^2,\ t h e n8(log)_a x^3dot(log)_b y^3dot(log)_c z^3=27 Statement II: (log)_b adot(log)_c b=(log)_c a ,\ also (log)_b a=1/("log"_a b) Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1. Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals